Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35457803

RESUMO

This study proposed a fabrication method for thin, film-based, transparent, and flexible digital microfluidic devices. A series of characterizations were also conducted with the fabricated digital microfluidic devices. For the device fabrication, the electrodes were patterned by laser ablation of 220 nm-thick indium tin oxide (ITO) layer on a 175 µm-thick polyethylene terephthalate (PET) substrate. The electrodes were insulated with a layer of 12 µm-thick polyethylene (PE) film as the dielectric layer, and finally, a surface treatment was conducted on PE film in order to enhance the hydrophobicity. The whole digital microfluidic device has a total thickness of less than 200 µm and is nearly transparent in the visible range. The droplet manipulation with the proposed digital microfluidic device was also achieved. In addition, a series of characterization studies were conducted as follows: the contact angles under different driving voltages, the leakage current density across the patterned electrodes, and the minimum driving voltage with different control algorithms and droplet volume were measured and discussed. The UV-VIS spectrum of the proposed digital microfluidic devices was also provided in order to verify the transparency of the fabricated device. Compared with conventional methods for the fabrication of digital microfluidic devices, which usually have opaque metal/carbon electrodes, the proposed transparent and flexible digital microfluidics could have significant advantages for the observation of the droplets on the digital microfluidic device, especially for colorimetric analysis using the digital microfluidic approach.

2.
Materials (Basel) ; 15(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35407696

RESUMO

In this work, polyvinyl alcohol (PVA) fiber and powder were added to geopolymer composites to toughen fly ash-based geopolymer, and their different toughening mechanisms were revealed. Firstly, different contents of active granulated blast furnace slag (GBFS) were added to the geopolymer to improve the reactivity of the GBFS/fly ash-based geopolymer, and the best ratio of GBFS and fly ash was determined through experiments testing the mechanical properties. Different contents of PVA powders and fibers were utilized to toughen the geopolymer composites. The effect of the addition forms and contents of PVA on the mechanical properties, freeze-thaw cycle resistance, and thermal decomposition properties of geopolymer composites were systematically studied. The results showed that the toughening effect of PVA fiber was better than that of PVA powder. The best compressive strength and flexural strength of geopolymer composites toughened by PVA fiber were 41.11 MPa and 8.43 MPa, respectively. In addition, the composition of geopolymer composites was explored through microstructure analysis, and the toughening mechanisms of different forms of PVA were explained. This study provided a new strategy for the toughening of geopolymer composites, which can promote the low-cost and efficient application of geopolymer composites in the field of building materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...